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Abstract
Landauer’s bound gives the minimum dissipation following erasure through a quantum thermodynamic pro-

cess. Recent developments in Quantum Thermodynamics and Quantum Information have shown that during a
general quantum thermodynamical process, it is impossible to reach exactly Landauer’s bound for non-equilibrium
processes. Injecting any other input state aside from the minimally dissipative state causes extra dissipation (en-
tropy production). The theoretical foundation of studying extra dissipation has been verified for erasure protocols.
The minimally dissipative states are found for two work-extraction protocols that subject a single qubit coupled
to a bosonic bath to a time-dependent Hamiltonian. The change in entropy, heat released and work extracted is
computed for various initial states and compared.

Introduction
Maxwell’s demon is a paradox of apparent energy extraction by a thermodynamic process while vi-
olating the Second Law of Thermodynamics. The Szilard engine is a formulation of such a process
that involves information erasure. Resolving the apparent violation of the second law of Thermo-
dynamics, Landauer’s principle states that the minimum amount of work necessary for information
erasure is kBT ln(2) where T is temperature and kB is Boltzmann constant. Additionally, the erasure
results into physical entropy production. However, Landauer’s principle holds for an initial state that
results into the least entropy production. When other initial states are injected, extra dissipation (en-
tropy production) is observed as a result of what can be classically seen as ”misaligned expectations”.
The extra dissipation has been studied for RESET protocols[1]. The project focuses on finding the
minimally dissipative initial states for thermodynamic processes which extract work.

Background

Entropy
The following defines information entropy for a general quantum system (known as Von Neumann
Entropy) represented by state ρ:

S(ρ) = −Tr{ρ log2(ρ)}. (1)

Landauer’s principle can generalised : the amount of work required to erase information represented
by the density operator ρ is given by kBTS(ρ) ln(2) where S(ρ) is von Neumann Entropy. Hence, we
can see that a physical quantity can be linked to information.

Landauer quantified minimum amount of energy required to erase one bit of information, or the
entropy production (dissipation) associated with the process. (Note that total (physical) entropy pro-
duction or dissipation is defined as σ = −Q/T + ∆Ssys where Q is the heat absorbed and ∆Ssys is
the change in entropy of the system). However, a deviation from the expected amount of dissipation
occurs when the initial state is not minimally dissipative[2].

Minimum Dissipative Initial State
The minimum dissipative state can be computed for two-level quantum systems.[1]. This sections
involves a brief discussion of the method to find the minimally dissipative state.

Note that any (two-dimensional) density operator can be represented as ρ = 1
2(I + +~a · ~φ) where

~σ = (σx, σy, σz) is just a vector of pauli matrices. Consider four linearly independent input density
matrices ρ0,ρ1,ρ2,ρ3 ; the bloch vectors associated with them ~a0,~a1,~a2, ~a3 and the heat or entropy flow
associated with them Φ0,Φ1,Φ2, Φ3. Define ~φ0 and ~φ = (φx, φy, φz) such that
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. Now, the Bloch vector of the minimally dissipative state is given by − tanh(φ/2)φ̂ where φ = |~φ|
and φ̂ = ~φ/φ.

Quantum Open System: Lindbladian Dynamics
The evolution of a quantum open system can be studied by Lindbladian dynamics. Consider a sys-
tem coupled to its environment. The total Hamiltonian is given by Htot = H + Henv + Hint where
H , Henv and Hint are the system, environment and interaction Hamiltonian respectively. In the
weak-coupling limit, the master equation governing the system evolution is given by

dρ

dt
= [H + HLS, ρ] +D(Ak) (3)

where
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∑
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†
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− 1

2
{A†k(ω)Al(ω), ρ}] (4)

where HLS is correction to local Hamiltonian, Ak(ω) are specific system operators in frequency
domain, γkl are coefficients determined by the bath operators [3]. Note that the summation over ω is
summation over all possible energy differences between various energy eigenstates.

Methods
A two-level quantum system with a single qbit coupled to a bath of bosons is considered. The Lind-
blad master equation governing the system is as follows:

ρ̇(t) = −i [H(t), ρ(t)] + E(t)(N(t) + 1)D[L(t)](ρ(t)) + E(t)N(t)D[L†(t)](ρ(t)) (5)

where
D[L(t)](ρ(t)) = LρL† − 1

2

{
LL†, ρ

}
(6)

,and N(t) = 1
e−βE(t)−1

. Note that L(t) is just the lowering operator.
For our protocol, the system is subjected to the following time dependent Hamiltonian:

H(t) =
1

2
E(t)(cos(θ(t))σz + sin(θ(t))σx), (7)

and the respective time-dependent lowering operator is L(t) = 1
2

[
cos(θ(t))σx − iσy − sin(θ(t))σz

]
.

For both the protocols, E(t) = E(0) − (E(0) − E(τ )) sin2(πt/(2τ ) where E(0) = E(τ )/50. For
protocol 1, θ(t) = π tτ and for protocol 2, θ(t) = π.

Note the definition of the quantities heat (Q), work (W ) and entropy produced (Σ).

Q(τ ) =

∫ τ

0
Tr(ρ̇(t)H(t))dt (8a)

W (τ ) =

∫ τ

0
Tr(ρ̇(t) ˙H(t))dt (8b)

Σ = −Q/T + S(ρ) (8c)

where T is Temperature of the baths.

Results
The two work extraction protocols were run on the following inputs:

ρ1 =

[
0.5 1
1 0.5

]
, ρ2 =

[
0.25 1

1 0.75

]
, ρ3

[
0.5 −0.5i
0.5i 0.5

]
(9)

along with σ0 which is the minimally dissipative state for the respective protocols found via the
method outlined previously.

Figure 1: Entropy Produced via Protocol 1

Figure 2: Entropy Produced via Protocol 2

Figure 3: Work Extracted via Protocol 1

Figure 4: Work Extracted via Protocol 2

Conclusions
• Impossibility of Landauer’s bound: It was found that the dissipation came close to Landauer’s

bound on slowing down the process. However, as it is a non-equilibrium process, the bound is not
exactly achieved.

• There is extra dissipation caused by injecting an initial state other than the minimally dissipative
state. The minimum dissipative state can be found out by following the procedure outlined before.

Forthcoming Research
The same results could be studied in other more complex systems. There is prospect to study entropy
production on injection of an initial state other than the minimally dissipative for the case of a particle
in an asymmetric double well potential coupled to a bosonic bath. The double well potential could be
used to implement Quantum Szilard Engine.
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